IntroductionMultidimensional PovertySimulationsTranslating impacts to 2020ResultsConclusions000000000000

Global multidimensional poverty and COVID-19: A decade of progress at risk? Social Science & Medicine, vol 291, 114457

> Sabina Alkire Ricardo Nogales Natalie Naïri Quinn Nicolai Suppa

Oxford Poverty and Human Development Initiative (OPHI) Department of International Development University of Oxford

> ESCWA - Expert Group Meeting February 10, 2022

> > A D F A 目 F A E F A E F A Q Q

Introduction	Multidimensional Poverty	Simulations	Translating impacts to 2020	Results	Conclusions
0	0	000	000	00	0

Introduction

Measuring multidimensional poverty

Simulations

Translating impacts to 2020

Results

Conclusions

Background

Research question:

What is the potential short-term impact of COVID-19 on multidimensional poverty at the global level?

Scope:

• Public action against the negative effects of COVID needed to take place – information was crucial

A D F A 目 F A E F A E F A Q Q

- We do not aim at explicitly accounting for national specificities we aim for a global analysis
- We use nationally representative microdatasets for simulations for 97 countries – they were collected in different time periods

- Poverty cutoff: 1/3
- $MPI = H \times A$
- Microdata was collected at different time points to account for this we apply a projection methodology that requires two intertemporally harmonised cross-sections for each country
- Our aggregate COVID effects consider 70 countries
 - ▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 のへで

Introduction Multidimensional Poverty Simulations Translating impacts to 2020 Results Conclusions 0 0 00 00 0 0

We implement simulations on two MPI indicators: nutrition and school attendance

Nutrition

- Scenarios informed by WFP measured risk of food insecurity.
- We assume that this risk materialises in actual malnutrition among the poor and vulnerable.
- Two data issues are covered:

i) country selection in WFP analysis, which imperfectly overlap with global MPI countries

 \rightarrow relative prevalence of nutrition deprivations in common countries compared to all global MPI as correction factor ii) within-country subpopulation selection in WFP analysis \rightarrow alternative likelihoods of 12%, 20% and 50% of the poor and vulnerable to experience new nutrition deprivations.

School attendance

• Scenarios informed by UNESCO data on school closures.

- Loss of school measure: share of days with closed schools in Mar/2020 Jun/2021
- After the first year of the pandemic, some 50% of the scheduled classes have been cancelled (see also Azevedo et al., 2021)

Six simulated scenarios

Three correspond to nutrition shocks only (50%, 20%, 12%)Three correspond to nutrition shocks combined with school attendance shock (50%)

50% nut. and 50% sch. att.

12% nut

イロト 不得下 イヨト イヨト

э

Introduction	Multidimensional Poverty	Simulations	Translating impacts to 2020	Results	Conclusions
0	0	000	•00	00	0

We proceed in two steps:

- i) we now cast multidimensional poverty to 2020 (ceteris paribus)
- ii) we predict the country-specific impacts on MPI and H based on these nowcasts

Nowcasting

• With only two harmonised cross-sections per country, we calibrate *logistic* trajectories for H and A, and then deduce that of MPI.

うして ふゆ く 山 マ ふ し マ うくの

• Importantly, theoretical bounds are respected

Methodological Approach

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Multidimensional Poverty	Simulations	Translating impacts to 2020	Results	Conclusions
0	0	000	000	00	0

Predictive models (example)

$$\Delta^* H_s = \gamma_0 + \gamma_1 H_s + \gamma_2 H_s^2 + u_s$$

Calibrated model (example)

$$\widehat{\Delta^* H_s}(2020) = \hat{\phi}_s \left(\hat{\gamma}_0 + \hat{\gamma}_1 H_s(2020) + \hat{\gamma}_2 \left(H_s(2020) \right)^2 \right),$$

with

$$\hat{\phi}_s = \frac{\Delta^* H_s}{\Delta^* H_s - \hat{u}_s} = \frac{\Delta^* H_s}{\hat{\gamma}_0 + \hat{\gamma}_1 H_s + \hat{\gamma}_2 H_s^2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Introduction	Multidimensional Poverty	Simulations	Translating impacts to 2020	Results	Conclusions
0	0	000	000	•0	0

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

Introduction	Multidimensional Poverty	Simulations	Translating impacts to 2020	Results	Conclusions
0	0	000	000	0.	0

COVID-19 scenario		Aggregate Adjusted Simulation for 2020			
Selection probabilities		MPI (M)	$\Delta \ \# \ {\rm poor}$	Setback	
Nutrition School attendance		$\hat{M}_{S}^{*}(2020)$	$\Delta \hat{Q}_S(2020)$	$(2020 - t^*)$	
((%)		(million)	(years)	
12	12 –		152	3.6	
20	20 –		213	4.8	
50	50 –		310	6.4	
12	50	0.146	426	8.0	
20	50	0.153	469	8.8	
50 50		0.164	547	9.9	

Table 2: Summary of Aggregate Results

Notes: Authors' calculations; MPI values are population-weighted aggregates across the 70 countries, while the increases in number of poor are totals across the same countries. All calculations based on UN-DESA mediumfertility population projections.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Concluding Remarks

- Information for effective policymaking is still missing. Yet policy action needs to take place!
- Short-term policies should make sure that the potential impacts that we find are not *persistent*.
- As more data become available, more fine-tuned regionand country-specific simulations can be performed
- Methodologically, our approach may be extended to other development indicators

• Ex-post evaluations will be crucial in the future.

Introduction	Multidimensional Poverty	Simulations	Translating impacts to 2020	Results	Conclusions
0	0	000	000	00	•

シックシード (中下・・中下・・日・)